Classification of Tumor Samples from Expression Data Using Decision Trunks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Tumor Samples from Expression Data Using Decision Trunks

We present a novel machine learning approach for the classification of cancer samples using expression data. We refer to the method as "decision trunks," since it is loosely based on decision trees, but contains several modifications designed to achieve an algorithm that: (1) produces smaller and more easily interpretable classifiers than decision trees; (2) is more robust in varying applicatio...

متن کامل

Chemometrics-enhanced Classification of Source Rock Samples Using their Bulk Geochemical Data: Southern Persian Gulf Basin

Chemometric methods can enhance geochemical interpretations, especially when working with large datasets. With this aim, exploratory hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods are used herein to study the bulk pyrolysis parameters of 534 samples from the Persian Gulf basin. These methods are powerful techniques for identifying the patterns of variations i...

متن کامل

MicroRNA Expression Profiles for Classification and Analysis of Tumor Samples

One kind of functional noncoding RNAs, microRNAs (miRNAs), form a class of endogenous RNAs that can have important regulatory roles in animals and plants by targeting transcripts for cleavage or translation repression. Researches on both experimental and computational approaches have shown that miRNAs indeed involve in the human cancer development and progression. However, the miRNAs that contr...

متن کامل

Feature Selection in Tumor Classification Using Microarray Gene Expression Data

Feature selection is the process of choosing a subset of the original predictive variables through the elimination of redundant and uninformative representatives. An example of importance is the analysis of gene expression data from DNA microarray hybridization experiments. The data obtained from the experiments usually contain a few samples each with expression levels of a large number of gene...

متن کامل

Gene Selection for Tumor Classification Using Microarray Gene Expression Data

In this paper we perform a t-test for significant gene expression analysis in different dimensions based on molecular profiles from microarray data, and compare several computational intelligent techniques for classification accuracy on Leukemia, Lymphoma and Prostate cancer datasets of broad institute and Colon cancer dataset from Princeton gene expression project. This paper also describes re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cancer Informatics

سال: 2013

ISSN: 1176-9351,1176-9351

DOI: 10.4137/cin.s10356